当前位置: > 设数列{an}的前n项和为Sn,已知a1=a,an+1=Sn+3^n...
题目
设数列{an}的前n项和为Sn,已知a1=a,an+1=Sn+3^n
1)设bn=Sn-3^n 求数列{bn}的通项公式
2)若数列{an}为递增数列,求a的取值范围

提问时间:2020-10-17

答案
1.A(n+1)=S(n+1)-Sn 得:S(n+1)-Sn=Sn+3^n
∴S(n+1)=2Sn+3^n
∴S(n+1)-3*3^n=2Sn-2*3^n
∴S(n+1)-3^(n+1)=2(Sn-3^n)
∴B(n+1)=2Bn 又∵S1=A1=a,B1=a-3
∴Bn为以a-3为首项,2为公比的等比数列
2.a(n+1)=Sn+3^n=bn+2*3^n
a(n+1)-an =bn+2*3^n-[b(n-1)+2*3^(n-1)]
=bn-b(n-1)+2[3^n-3^(n-1)]
=(a-3)*[2^(n-1)-2^(n-2)]+2[3^n-3^(n-1)]
=(a-3)*2^(n-2)+4*3^(n-1)>=0
a-3>=-4*3^(n-1)/2^(n-2)
=-12*(3/2)^(n-2) a>=3-12*(3/2)^(n-2)
因为(3/2)^(n-2)最小=(3/2)^(1-2)=2/3 3-12*(3/2)^(n-2)最大=3-12*2/3=-5 a>=-5
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.