当前位置: > 证明3^(4n+2)+5^(2n+1)能被14整除中,到n=k+1这步时 3^(4k+2)3^4+5^(2K+1)5^2该怎么做?...
题目
证明3^(4n+2)+5^(2n+1)能被14整除中,到n=k+1这步时 3^(4k+2)3^4+5^(2K+1)5^2该怎么做?

提问时间:2020-10-17

答案
3^(4k+2)3^4+5^(2K+1)5^2=[3^(4k+2)+5^(2K+1)]5^2+3^(4k+2)(3^4-5^2)
=[3^(4k+2)+5^(2K+1)]5^2+3^(4k+2)*14*4
因为3^(4k+2)+5^(2K+1)能被14整除,即[3^(4k+2)+5^(2K+1)]5^2能被14整除,3^(4k+2)*14*4明显也能被14整除
所以3^(4k+2)3^4+5^(2K+1)5^2能被14整除,即n=k+1也成立
所以3^(4n+2)+5^(2n+1)能被14整除
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.