当前位置: > 设A,B都是实对称矩阵,证明:存在正交矩阵P,使得(P^-1)AP=B的充分必要条件是A,B的特征值全部相同....
题目
设A,B都是实对称矩阵,证明:存在正交矩阵P,使得(P^-1)AP=B的充分必要条件是A,B的特征值全部相同.

提问时间:2020-10-17

答案
必要性:因为(P^-1)AP=B,所以 A与B 相似,而相似矩阵有相同的特征值,所以A,B的特征值全部相同.充分性:由A,B都是实对称矩阵且A,B的特征值全部相同,设为 a1,a2,...,an则存在正交矩阵C,D满足:C^-1AC = diag(a1,a2,...,a...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.