当前位置: > 定积分(几何意义有关)一题...
题目
定积分(几何意义有关)一题
设f(x)在[a,b]上有f(x)>0,f'(x)0 ,s1=∫(上限是b,下限是a)f(x0dx;s2=f(b)(b-a);s3=[f(x)+f(b)]/2 *(b-a) 则:
A.s1
:中直定理,不是说s1=s2吗?

提问时间:2020-10-17

答案
f(x)在[a,b]上大于0,严格单调递减,下凸.
s1是f(x)与x轴围成的图形面积
s2是长宽为f(b),(b-a)的矩形面积
s3是连接并延长(b,f(b)),(x,f(x))至x=a的直角梯形面积
画图容易看出
s1>s2,s3>s2
我只能得到这个结果,我认为s2是最小的
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.