当前位置: > 求函数y=1/sin²α+2/cos²α的最小值...
题目
求函数y=1/sin²α+2/cos²α的最小值
能有三种方法更好

提问时间:2020-10-17

答案
方法一:
依权方和不等式得
y=1/sin²α+2/cos²α
=1²/sin²α+(√2)²/cos²α
≥(1+√2)²/(sin²α+cos²α)
=3+2√2.
∴y|min=3+2√2.
方法二:
依柯西不等式得
(sin²α+cos²α)(1/sin²α+2/cos²α)≥(1+√2)²
→1/sin²α+2/cos²α≥3+2√2.
∴y|min=3+2√2.
方法三:
用基本不等式
设a=sin²α,b=cos²α,则a+b=1.
∴y=(1/a+2/b)·1
=(a+b)(1/a+2/b)
=3+(2a/b+b/a)
≥3+2√[(2a/b)·(b/a)]
=3+2√2.
∴y|min=3+2√2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.