当前位置: > 椭圆方程x^2/2+y^2=,此时,定点(1/2,0)与椭圆C上动点距离最小值是...
题目
椭圆方程x^2/2+y^2=,此时,定点(1/2,0)与椭圆C上动点距离最小值是
椭圆方程x^2/2+y^2=1,此时,定点(1/2,0)与椭圆C上动点距离最小值是
√3/2
能不能不用极坐标来求解.

提问时间:2020-10-17

答案
设点P(X,Y)在椭圆上,定点(1/2,0)与点P的距离为D.
D^2=(X-1/2)^2+Y^2=(X-1/2)^2+(1-X^2/2)=X^2/2-X+5/4=(1/2)*(X-1)^2+3/4
所以D^2>=3/4,所以D>=√3/2
此类题目一般用设点和距离公式做,注意利用椭圆方程消去一个变量.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.