当前位置: > 函数f(x)=x*(3-x)^1/2在闭区间0~3上满足罗尔中值定理的值为?...
题目
函数f(x)=x*(3-x)^1/2在闭区间0~3上满足罗尔中值定理的值为?

提问时间:2020-10-17

答案
函数f(x)=x*(3-x)^1/2在0与3处等于0,符合罗尔中值定理,所以在0~3上必存在这样一点
在哪儿呢?求导
f'(x)=(3-x)^1/2-x*(3-x)^(-1/2)=0
解得唯一的一点是 :x=2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.