当前位置: > 无穷等比数列{an}的前n项和为Sn,则S2,S4-S2,S6-S4也成等比数列....
题目
无穷等比数列{an}的前n项和为Sn,则S2,S4-S2,S6-S4也成等比数列.
上述结论为什么必须要满足 公比q≠-1 才成立?
同样的.S2n,S4n-S2n,S6n-S4n成等比数列是否也要满足什么条件?这三者公比多少?

提问时间:2020-10-17

答案
当公比为-1时,数列为交错数列,相邻两项的和为0,
如数列2,-2,2,-2,2,-2,.
S2,S4-S2,S6-S4每一项都是0,当然不成等比数列了.
同理,S2n,S4n-S2n,S6n-S4n成等比数列也要满足 q≠-1这个条件.
另:S2n,S4n-S2n,S6n-S4n的公比为 q^(2n).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.