题目
对于a b c 三个数用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中的最小的数
提问时间:2020-10-17
答案
(2008•镇江)阅读以下材料:
对于三个数a、b、c,用M(a,b,c)表示这三个数的平均数,用min(a,b,c)表示这三个数中最小的数.例如:M{-1,2,3}=
-1+2+3
3
=
4
3
;min{-1,2,3}=-1;min{-1,2,a}=a(a≤-1);-1(a>-1)
解决下列问题:
(1)填空:min{sin30°,cos45°,tan30°}=,如果min{2,2x+2,4-2x}=2,则x的取值范围为≤x≤;
(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x.
②根据①,你发现了结论“如果M{a,b,c}=min{a,b,c},那么(填a,b,c的大小关系)”,
证明你发现的结论.
③运用②的结论,填空:若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y},则x+y=;
(3)在同一直角坐标系中作出函数y=x+1,y=(x+1)2,y=2-x的图象(不需列表描点),通过观察图象,填空:min{x+1,(x-1)2,2-x}的最大值为.
考点:二次函数的图象;解一元一次方程;一元一次不等式组的应用;一次函数的图象;特殊角的三角函数值.
专题:阅读型.
分析:(1)因为用min(a,b,c)表示这三个数中最小的数.分别计算sin30°,cos45°,tan30°的值,因为sin30°最小,所以min{sin30°,cos45°,tan30°}=sin30度;
(2)结合题意,分情况讨论,将实际问题与数学思想联系起来,读懂题列出算式或一元一次不等式组即可求解;
(3)作出正确的图象,是解题的关键.
(1)min{sin30°,cos45°,tan30°}=
1
2
,
如果min{2,2x+2,4-2x}=2,则x的取值范围为0≤x≤1;
(2)①∵M{2,x+1,2x}=
2+x+1+2x
3
=x+1.
法一:∵2x-(x+1)=x-1.当x≥1时,
则min{2,x+1,2x}=2,则x+1=2,
∴x=1.当x<1时,
则min{2,x+1,2x}=2x,则x+1=2x,
∴x=1(舍去).
综上所述:x=1.
法二:∵M{2,x+1,2x}=
2+x+1+2x
3
=x+1=min{2,x+1,2x},
∴
2≥x+1
2x≥x+1
∴
x≤1
x≥1
∴x=1.
②a=b=c.
证明:∵M{{a,b,c}}=
a+b+c
3
,如果min{a,b,c}=c,则a≥c,b≥c.则有
a+b+c
3
=c,
即a+b-2c=0.
∴(a-c)+(b-c)=0.
又a-c≥0,b-c≥0.
∴a-c=0且b-c=0.
∴a=b=c.
其他情况同理可证,故a=b=c.
③-4;
(3)作出图象.
最大值是1.
对于三个数a、b、c,用M(a,b,c)表示这三个数的平均数,用min(a,b,c)表示这三个数中最小的数.例如:M{-1,2,3}=
-1+2+3
3
=
4
3
;min{-1,2,3}=-1;min{-1,2,a}=a(a≤-1);-1(a>-1)
解决下列问题:
(1)填空:min{sin30°,cos45°,tan30°}=,如果min{2,2x+2,4-2x}=2,则x的取值范围为≤x≤;
(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x.
②根据①,你发现了结论“如果M{a,b,c}=min{a,b,c},那么(填a,b,c的大小关系)”,
证明你发现的结论.
③运用②的结论,填空:若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y},则x+y=;
(3)在同一直角坐标系中作出函数y=x+1,y=(x+1)2,y=2-x的图象(不需列表描点),通过观察图象,填空:min{x+1,(x-1)2,2-x}的最大值为.
考点:二次函数的图象;解一元一次方程;一元一次不等式组的应用;一次函数的图象;特殊角的三角函数值.
专题:阅读型.
分析:(1)因为用min(a,b,c)表示这三个数中最小的数.分别计算sin30°,cos45°,tan30°的值,因为sin30°最小,所以min{sin30°,cos45°,tan30°}=sin30度;
(2)结合题意,分情况讨论,将实际问题与数学思想联系起来,读懂题列出算式或一元一次不等式组即可求解;
(3)作出正确的图象,是解题的关键.
(1)min{sin30°,cos45°,tan30°}=
1
2
,
如果min{2,2x+2,4-2x}=2,则x的取值范围为0≤x≤1;
(2)①∵M{2,x+1,2x}=
2+x+1+2x
3
=x+1.
法一:∵2x-(x+1)=x-1.当x≥1时,
则min{2,x+1,2x}=2,则x+1=2,
∴x=1.当x<1时,
则min{2,x+1,2x}=2x,则x+1=2x,
∴x=1(舍去).
综上所述:x=1.
法二:∵M{2,x+1,2x}=
2+x+1+2x
3
=x+1=min{2,x+1,2x},
∴
2≥x+1
2x≥x+1
∴
x≤1
x≥1
∴x=1.
②a=b=c.
证明:∵M{{a,b,c}}=
a+b+c
3
,如果min{a,b,c}=c,则a≥c,b≥c.则有
a+b+c
3
=c,
即a+b-2c=0.
∴(a-c)+(b-c)=0.
又a-c≥0,b-c≥0.
∴a-c=0且b-c=0.
∴a=b=c.
其他情况同理可证,故a=b=c.
③-4;
(3)作出图象.
最大值是1.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1课文写老王,可以从两个方面概括为两个字,一曰“________”,二曰“________”.
- 2汽车额定功率为P,汽车质量为m,在平直路面上行驶时所受阻力为车重的k倍,则汽车在此水平路面上运动的最大速度为 _ .(g为重力加速度)
- 32010年上海将举办世博会,为此市政府提出:“加快轨道交通建设,让城市更畅通”.去年第三季度某工程队承担了铺设一段3千米长的地铁轨道的光荣任务,铺设了600米后,该工程队改进技
- 4八分之五米是[ ]米的八分之一
- 5春秋战国时期各诸侯开展变法运动的深刻社会根源是:
- 6(x-2y)(x+2y)-(x+2y)²【要完整过程,
- 7“吹面不寒杨柳风”,不错的,像母亲的手抚摸着你.风里带来些新翻的泥土的气息,混着青草味,还有各种花
- 8计算二重积分 ∫∫(积分区域D) x+y/x^2+y^2d〥 d:x^2+y^21
- 9在我小时候妈妈告诉过我太阳比地球大用英语怎么说
- 1031、把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大