当前位置: > 设a、b、m、n∈R+,且m+n=1,试比较根号ma+nb与m根号a+n根号b的大小...
题目
设a、b、m、n∈R+,且m+n=1,试比较根号ma+nb与m根号a+n根号b的大小

提问时间:2020-10-17

答案
根号ma+nb平方后得:ma+nb为1式
m根号a+n根号b平方后得:m²a+n²b+2mn√ab为2式
由1式-2式得:
(m-m²)a+(n-n²)b-2mn√ab
把n=1-m代入得:
(n-n²)(a+b)-2mn√ab=(n-n²)(a+b)-2(1-n)n√ab=(n-n²)(a+b)-2(n-n²)√ab
=(n-n²)(a+b-2√ab)=(n-n²)(√a-√b)²
因为a、b、m、n∈R+,且m+n=1
所以(n-n²)>0.
(√a-√b)²>0
所以:1式-2式>0
即:1式>2式
所以:ma+nb>m²a+n²b+2mn√ab
所以:√ma+nb>m√a+n√b
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.