当前位置: > f(x)在[0,1]上连续,(0.1)内可导,f(0)=3∫(2/3~4)f(x)dx,证明在(0,1)内c存在,f(c)导数=0...
题目
f(x)在[0,1]上连续,(0.1)内可导,f(0)=3∫(2/3~4)f(x)dx,证明在(0,1)内c存在,f(c)导数=0

提问时间:2020-10-17

答案
你写错了吧,积分上限是1.由积分中值定理,存在b位于(2/3 1)之间,使得积分值=3*(1-2/3)f(b),即f(0)=f(b).在[0 b]上用Rolle中值定理得结论.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.