当前位置: > 设方阵A满足A2-A-2E=0,证明:A和A+2E均可逆,并求A和A+2E的逆矩阵....
题目
设方阵A满足A2-A-2E=0,证明:A和A+2E均可逆,并求A和A+2E的逆矩阵.

提问时间:2020-10-17

答案
证明:∵方阵A满足A2-A-2E=0,
∴A2-A=2E,
∴A×
A−E
2
=E
所以A可逆,逆矩阵为
A−E
2

∵方阵A满足A2-A-2E=0,
∴A2=A+2E,
由A可逆知A2可逆,
所以A+2E可逆,
逆矩阵为[
A−E
2
]2=
(A−E)2
4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.