当前位置: > 利用基本不等式证明:若a、b属于正实数,且a+b=1,则根号(a+1/2)+根号(b+1/2)小于等于2...
题目
利用基本不等式证明:若a、b属于正实数,且a+b=1,则根号(a+1/2)+根号(b+1/2)小于等于2

提问时间:2020-10-16

答案
令m=√(x+0.5),n=√(y+0.5)
即m∧2+n∧2=2
根据平方平均大于等于算术平均
√((m∧2+n∧2)/2)≥(m+n)/2
所以m+n≤2
根号(a+1/2)+根号(b+1/2)小于等于2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.