当前位置: > 证明:x^4+y^4+z^4-2x^2y^2-2x^2z^2-2y^2z^2能被(x+y+z)整除...
题目
证明:x^4+y^4+z^4-2x^2y^2-2x^2z^2-2y^2z^2能被(x+y+z)整除
证明:x^4+y^4+z^4-2x^2y^2-2x^2z^2-2y^2z^2是(x+y+z)的倍数

提问时间:2020-10-16

答案
x^4+y^4+z^4-2x^2y^2-2x^2z^2-2y^2z^2
=x^4+y^4+z^4+2x^2y^2-2x^2z^2-2y^2z^2-4x^2y^2
=(x^2+y^2-z^2)^2-4x^2y^2
=(x^2+y^2-z^2+2xy)(x^2+y^2-z^2-2xy)
=[(x+y)^2-z^2][(x-y)^2-z^2]
=(x+y+z)(x+y-z)(x-y+z)(x-y-z)
所以x^4+y^4+z^4-2x^2y^2-2x^2z^2-2y^2z^2是(x+y+z)的倍数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.