当前位置: > 设△ABC的三边长分别为2m+3,m²+2m,m²+3m+3,其中m>0,则△ABC的最大内角的度数为多少...
题目
设△ABC的三边长分别为2m+3,m²+2m,m²+3m+3,其中m>0,则△ABC的最大内角的度数为多少

提问时间:2020-10-16

答案
m>0
(m^2+3m+3)-(2m+3)=m^2+m=m(m+1)>0
(m^2+3m+3)-(m^2+2m)=m+3>0
所以m^2+3m+3最大
所以cos最大角=[(2m+3)^2+(m^2+2m)-(m^2+3m+3)^2]/2(m^2+2m)(2m+3)
(2m+3)^2+(m^2+2m)^2-(m^2+3m+3)^2
=(2m+3)^2+(m^2+2m+m^2+3m+3)(m^2+2m-m^2-3m-3)
=(2m+3)^2+(2m^2+5m+3)(-m-3)
=(2m+3)^2+(m+1)(2m+3)(-m-3)
=(2m+3)(2m+3-m^2-4m-3)
=-(2m+3)(m^2+2m)
所以cos最大角=[(2m+3)^2+(m^2+2m)-(m^2+3m+3)^2]/2(m^2+2m)(2m+3)
=-1/2
所以最大角=120度
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.