题目
已知数列an的前n项和为sn,前n项积为Tn,且Tn=2的n(1-n)次方.求a1.
(2)求证:数列an为等比数列
(3)是否存在常数a,使(S(n+1)-a)^2=(S(n+2)-a)*(Sn-a)对n∈N~都成立?存在则求a值,不存在说明理由.
(2)求证:数列an为等比数列
(3)是否存在常数a,使(S(n+1)-a)^2=(S(n+2)-a)*(Sn-a)对n∈N~都成立?存在则求a值,不存在说明理由.
提问时间:2020-10-16
答案
∵数列a[n]的前n项和为S[n],前n项积为T[n],且T[n]=2^[n(1-n)]
∴a[1]=T[1]=2^[1(1-1)]=1
(2)证明:∵T[n]=2^[n(1-n)]
∴T[n-1]=2^[(n-1)(2-n)]
将上面两式相除,得:a[n]=2^[-2(n-1)]
∴a[n]=(1/4)^(n-1)
∵a[n+1]=(1/4)^n
∴a[n+1]/a[n]=1/4
∴a[n]为等比数列
(3)分析:
倘若:(S[n+1]-a)^2=(S[n+2]-a)*(S[n]-a)对n∈N*都成立
那么:S[n+1]^2-2aS[n+1]+a^2=S[n+2]S[n]-aS[n+2]-aS[n]+a^2
即:S[n+1]^2-2aS[n+1]=S[n+2]S[n]-aS[n+2]-aS[n]
∵S[n]=[1-(1/4)^n]/(1-1/4)=4[1-(1/4)^n]/3
∴S[n+1]=4[1-(1/4)^(n+1)]/3
S[n+2]=4[1-(1/4)^(n+2)]/3
∴16[1-2(1/4)^(n+1)+(1/4)^(2n+2)]/9-8a[1-(1/4)^(n+1)]/3
=16[1-(1/4)^n-(1/4)^(n+2)+(1/4)^(2n+2)]/9-4a[1-(1/4)^(n+2)]/3-4a[1-(1/4)^n]/3
即:16(1/4)^n[1+(1/4)^2-2(1/4)]/9=4a(1/4)^n[1+(1/4)^2-2(1/4)]/3
∴a=4/3
答:存在常数a=4/3.
当常数a=4/3时:
∵S[n]=[1-(1/4)^n]/(1-1/4)=4[1-(1/4)^n]/3=4/3-4(1/4)^n/3
∴S[n+1]=4/3-4(1/4)^(n+1)/3
S[n+2]=4/3-4(1/4)^(n+2)/3
∵(S[n+1]-a)^2=(S[n+1]-4/3)^2=[-4(1/4)^(n+1)/3]^2=16[(1/4)^(2n+2)]/9
而:(S[n+2]-a)*(S[n]-a)
=(S[n+2]-4/3)*(S[n]-4/3)
=[-4(1/4)^n/3][-4(1/4)^(n+2)/3]
=16[(1/4)^(2n+2)]/9
∴(S[n+1]-4/3)^2=(S[n+2]-4/3)*(S[n]-a)对n∈N*都成立
即:存在常数a=4/3,使(S[n+1]-a)^2=(S[n+2]-a)*(S[n]-a)对n∈N*都成立
∴a[1]=T[1]=2^[1(1-1)]=1
(2)证明:∵T[n]=2^[n(1-n)]
∴T[n-1]=2^[(n-1)(2-n)]
将上面两式相除,得:a[n]=2^[-2(n-1)]
∴a[n]=(1/4)^(n-1)
∵a[n+1]=(1/4)^n
∴a[n+1]/a[n]=1/4
∴a[n]为等比数列
(3)分析:
倘若:(S[n+1]-a)^2=(S[n+2]-a)*(S[n]-a)对n∈N*都成立
那么:S[n+1]^2-2aS[n+1]+a^2=S[n+2]S[n]-aS[n+2]-aS[n]+a^2
即:S[n+1]^2-2aS[n+1]=S[n+2]S[n]-aS[n+2]-aS[n]
∵S[n]=[1-(1/4)^n]/(1-1/4)=4[1-(1/4)^n]/3
∴S[n+1]=4[1-(1/4)^(n+1)]/3
S[n+2]=4[1-(1/4)^(n+2)]/3
∴16[1-2(1/4)^(n+1)+(1/4)^(2n+2)]/9-8a[1-(1/4)^(n+1)]/3
=16[1-(1/4)^n-(1/4)^(n+2)+(1/4)^(2n+2)]/9-4a[1-(1/4)^(n+2)]/3-4a[1-(1/4)^n]/3
即:16(1/4)^n[1+(1/4)^2-2(1/4)]/9=4a(1/4)^n[1+(1/4)^2-2(1/4)]/3
∴a=4/3
答:存在常数a=4/3.
当常数a=4/3时:
∵S[n]=[1-(1/4)^n]/(1-1/4)=4[1-(1/4)^n]/3=4/3-4(1/4)^n/3
∴S[n+1]=4/3-4(1/4)^(n+1)/3
S[n+2]=4/3-4(1/4)^(n+2)/3
∵(S[n+1]-a)^2=(S[n+1]-4/3)^2=[-4(1/4)^(n+1)/3]^2=16[(1/4)^(2n+2)]/9
而:(S[n+2]-a)*(S[n]-a)
=(S[n+2]-4/3)*(S[n]-4/3)
=[-4(1/4)^n/3][-4(1/4)^(n+2)/3]
=16[(1/4)^(2n+2)]/9
∴(S[n+1]-4/3)^2=(S[n+2]-4/3)*(S[n]-a)对n∈N*都成立
即:存在常数a=4/3,使(S[n+1]-a)^2=(S[n+2]-a)*(S[n]-a)对n∈N*都成立
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1一本书,小李5天看完,小方3天看完,则小李、小方两人看书的速度之比是( ) ),看书的效率之比是(
- 2甄的左边加一个耳朵旁读什么?
- 32,4-二甲基-3-乙基庚烷的结构式
- 4已知二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1 1)求f(x)的解析式 2)求f(x)在〔-1,1〕的最大和最小值.
- 5在马说中说明了统治者对人才的决定作用是哪句话
- 6圆的周长是18.84厘米,圆的半径是( ) 急!给好评,直接给答案.
- 7象限角K什么意思
- 8计算800+799-798-797+796+795-794-793+……+4+3-2-1=( )
- 9请问一个圆柱体直径为13.5米,高为3米.能容纳多少立方水?
- 10NaOH在水中电力出Na+和OH-,要使溶液中每100个水分子中含有1个Na+,则在90g水中需溶解的NaOH为?
热门考点
- 1swedish explorer什么意思
- 2小学六年级上册第二组的课文中,哪些人物给你留下了深刻的印象?哪些事情打动了你?
- 3正午太阳高度角计算?
- 4郑愁予最好的几首诗
- 5圆柱和圆锥等底等高,它们的体积的和是24立方米.问:圆柱的体积是多少?圆锥的体积是多少?
- 6汉译英 思想家( )作家( )胜利者( )读者( ) 发明家( )
- 7无情的笑—() 开心的笑—()诚实的笑—()不显著的笑—()挖苦别人的笑—()讨好别人的笑—()
- 8我想知道关于人生哲理的名句名言!
- 9转速为1800 r/min的四冲程内燃机,每秒钟经过 _个冲程,做功 _次.若该内燃机功率是9000W,则一次做功为 _J.
- 10关於“放弃也是一种财富”的名人名言