题目
等差数列{an}满足a2=0,a6+a8=-10 (Ⅰ)求数列An的通项公式 (Ⅱ)求数列{An/2的n-1次幂)的前n项和
提问时间:2020-10-16
答案
(i)
a6+a8=-10
所以a7=(a6+a8)/2=-5
因为a2=0
所以d=(-5-0)/5=-1
那么an=a2+(n-2)d=0+2-n=2-n
(ii)
bn=an/2^(n-1)=(2-n)/2^(n-1)
Sn=1/2^0+0/2^1+(-1)/2^2+...+(2-n)/2^(n-1).(1)
Sn/2=1/2^1+0/2^2+(-1)/2^3+...+(2-n)/2^n.(2)
(1)-(2)得Sn/2=1+(-1)/2+(-1)/2^2+(-1)/2^3+...+(-1)/2^(n-1)-(2-n)/2^n=1+(-1/2)*[1-(1/2)^(n-1)]/(1-1/2)-(2-n)/2^n=1-1+(1/2)^(n-1)-(2-n)/2^n=(1/2)^(n-1)-(2-n)/2^n
那么Sn=(1/2)^(n-2)-(2-n)/2^(n-1)
如果不懂,请Hi我,祝学习愉快!
a6+a8=-10
所以a7=(a6+a8)/2=-5
因为a2=0
所以d=(-5-0)/5=-1
那么an=a2+(n-2)d=0+2-n=2-n
(ii)
bn=an/2^(n-1)=(2-n)/2^(n-1)
Sn=1/2^0+0/2^1+(-1)/2^2+...+(2-n)/2^(n-1).(1)
Sn/2=1/2^1+0/2^2+(-1)/2^3+...+(2-n)/2^n.(2)
(1)-(2)得Sn/2=1+(-1)/2+(-1)/2^2+(-1)/2^3+...+(-1)/2^(n-1)-(2-n)/2^n=1+(-1/2)*[1-(1/2)^(n-1)]/(1-1/2)-(2-n)/2^n=1-1+(1/2)^(n-1)-(2-n)/2^n=(1/2)^(n-1)-(2-n)/2^n
那么Sn=(1/2)^(n-2)-(2-n)/2^(n-1)
如果不懂,请Hi我,祝学习愉快!
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1some,any,many,mach的区别
- 2求5句动物的句子要采用了明贬实褒的意思
- 3化学式CH2是什么?
- 4已知等差数列an是递增数列,且满足a4a7=22,a3+a8=13
- 5英语中的音标怎样才能个好的记住】
- 6帮我看一下有没有错误 英语小作文
- 71.多少碘酸钾中含碘元素50mg 2.多少碳酸氢铵(NH4HCO3)和5.35kg氯化铵(NH4Cl)d的含氮量相等
- 8已知质点的运动学方程是x=(10+3t^2)i+2t^2j,帮我求一下其轨迹方程;谢谢
- 9下列动物分别象征着什么?
- 10平行六面体ABCD-A′B′C′D′中,AB=1,AD=2,AA′=3,∠BAA′=∠DAA′=60度,∠BAD=90度,则AC′的长为多少?