当前位置: > 【高数】利用曲线积分计算旋轮线x=a(t-sint),y=a(1-cost)的一拱与ox轴围成的面积...
题目
【高数】利用曲线积分计算旋轮线x=a(t-sint),y=a(1-cost)的一拱与ox轴围成的面积
求讲解>.

提问时间:2020-10-16

答案
A=∫ (0到2π)y(t)dx(t)
=∫ (0到2π)x'乘以y d(t) 而x'乘以y=a(1-cost)乘以a(1-cost)
所以
A=∫ (0到2π){a²(1-2cost+cos²t)}dt
=a²乘以∫ (0到2π)(3/2-2cost+1/2cos2t)dt=3a²π
这是我们高数书上的完整解答.字打得比较搓,希望别见怪.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.