当前位置: > 设A B为n阶矩阵,且A B AB-I可逆,证明:A-(B的逆)可逆...
题目
设A B为n阶矩阵,且A B AB-I可逆,证明:A-(B的逆)可逆

提问时间:2020-10-16

答案
AB-I=AB-(B^-1)*B=(A-B^-1)*B所以上式两边都右乘(AB-I)^-1,得到I=(A-B^-1)*B*(AB-I)^-1=(A-B^-1)*(B*(AB-I)^-1)那(A-B^-1)的逆不就求出来了,就是B*(AB-I)^-1注意:上面的*表示乘号,不是伴随矩阵的意思本人数学专...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.