当前位置: > 在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是BC上的任意一点,M到腰AC、AB的距离为h1、h2求h1+h2=h...
题目
在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是BC上的任意一点,M到腰AC、AB的距离为h1、h2求h1+h2=h

提问时间:2020-10-16

答案
设MF=h1,ME=h2,作M到BD的垂线交BD于N
在直角三角形BEM和直角三角形BMN中,
MN//CD,所以∠BMN=∠BCD=∠EBM
BM为公共边,所以直角三角形BEM和直角三角形BMN全等
EM=BN,而MF=ND
因此,MF+ME=ND+BN,即h1+h2=h
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.