当前位置: > 简谐运动的微分方程如何解...
题目
简谐运动的微分方程如何解

提问时间:2020-10-16

答案
无阻尼的简谐自由运动的微分方程:
mx''+kx=0 (1)
初始条件:
x(0)=x0 x'(0)=x'0 (2)
(1)的特征方程:ms^2+k=0 (3)
解出: s1=(k/m)^0.5 s2=-(k/m)^0.5 (4)
(1)的通x(t)=C1e^(s1t)+C2e^(s2t) (5)
根据(2)-> C1+C2=x0
C1s1+C2s2=x'0
解出C1,C2,代入s1,s2 就可以得到(1)的通解

对于强迫振动,方程为: mx''+kx=f(t) (6)
其解法是:先找出(6)的特解,再与(5)相加,就是(6)的通解.
对于有阻尼的振动,解法略微复杂一点.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.