当前位置: > 设a>0,求函数f(x)=x-ln(x+a)(x∈(0,+∞))的单调区间....
题目
设a>0,求函数f(x)=
x
-ln(x+a)(x∈(0,+∞))的单调区间.

提问时间:2020-10-15

答案
由题意得f′(x)=
1
2
x
-
1
x+a
(x>0)

令f′(x)=0,
即x2+(2a-4)x+a2=0,
其中△=4(a-2)2-4a2=8-8a,
(i)当a>1时,△<0成立,
对所有x>0,有x2+(2a-4)+a2>0.
即f′(x)>0,
此时f(x)在(0,+∞)内单调递增;
(ii)当a=1时,△=0成立,
对x≠1,有x2+(2a-4)x+a2>0,
即f′(x)>0,
此时f(x)在(0,1)内单调递增,且在(1,+∞)内也单调递增,
又知函数f(x)在x=1处连续,
因此,函数f(x)在(0,+∞)内单调递增;
(iii)当0<a<1时,△>0成立,
令f′(x)>0,
即x2+(2a-4)x+a2>0,
解得x<2-a-2
1-a
或x>2-a+2
1-a

因此,函数f(x)在区间(0,2-a-2
1-a
)
(2-a+2
1-a
,+∞)
内也单调递增.
令f′(x)<0,
即x2+(2a-4)x+a2<0,
解得2-a-2
1-a
<x<2-a+2
1-a

因此,函数f(x)在区间(2-a-2
1-a
,2-a+2
1-a
)
内单调递减.
由题意函数f(x)=
x
-ln(x+a),首先求出函数的导数,然后根据导数与函数单调区间的关系对a的大小进行分类讨论.

利用导数研究函数的单调性.

本题主要考查导数的概念和计算,应用导数研究函数单调性的方法及推理和运算能力.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.