题目
用罗尔中值定理证明:方程3ax^2+2bx-(a+b)=0在(0,1)内有实根.设F
用罗尔中值定理证明:方程3ax^2+2bx-(a+b)=0在(0,1)内有实根.
设F(x)=ax^3+bx^2-(a+b)x,则F(x)在[0,1]上连续,在(0,1)内可导,F(0)=F(1)=0,所以由罗尔中值定理,至少存在一点ξ∈(0,1),使得F'(ξ)=0.F'(x)=3ax^2+2bx-(a+b),所以3aξ^2+2bξ-(a+b)=0,所以ξ是方程方程3ax^2+2bx-(a+b)=0在(0,1)内的一个实根
为什么要把f(x)重新还原成导函数啊?好像定理里没有这一条吧?
用罗尔中值定理证明:方程3ax^2+2bx-(a+b)=0在(0,1)内有实根.
设F(x)=ax^3+bx^2-(a+b)x,则F(x)在[0,1]上连续,在(0,1)内可导,F(0)=F(1)=0,所以由罗尔中值定理,至少存在一点ξ∈(0,1),使得F'(ξ)=0.F'(x)=3ax^2+2bx-(a+b),所以3aξ^2+2bξ-(a+b)=0,所以ξ是方程方程3ax^2+2bx-(a+b)=0在(0,1)内的一个实根
为什么要把f(x)重新还原成导函数啊?好像定理里没有这一条吧?
提问时间:2020-10-15
答案
F(X)是原函数f(x)=3ax^2+2bx-(a+b)的积分...LZ是不是看错了... 罗尔定理
如果函数f(x)满足:(1)在闭区间[a,b]上连续(其中a不等于b);(2)在开区间(a,b)内可导;(3)在区间端点处的函数值相等,即f(a)=f(b), 那么在区间(a,b)内至少存在一点ξ(a
如果函数f(x)满足:(1)在闭区间[a,b]上连续(其中a不等于b);(2)在开区间(a,b)内可导;(3)在区间端点处的函数值相等,即f(a)=f(b), 那么在区间(a,b)内至少存在一点ξ(a
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 11、已知关于x的方程2x³-(根号3+1)x+m=0的两根为sinα和cosα,求m的值
- 2ten to two 什么意思啊?
- 3求一篇英语作文,就业时选择高薪还是有前途的职业?
- 4反映我国主要农业区的区域组合正确的是( ) ①北方地区 ②南方地区 ③西北地区 ④青藏地区. A.①② B.②③ C.③④ D.①④
- 5作文 我知道
- 6春联,是文学殿堂里得以枝奇葩,它发自千人之心,出自万人之手,各展其才,各显千秋,豪放——,婉约——,粗犷——,细腻.用:如旭日喷薄、似风坲杨柳、如小桥流水、若大江东去这几个词填空!
- 7速度与拉力的大小有关么
- 8镁带燃烧后产生的新物质是什么
- 9Is this schoolbag yours?No,Mine is different from it.is different from下划线
- 10四年级常用关联词有哪些
热门考点