题目
用二重积分计算抛物面x2+y2=z和平面z=1所围的体积
提问时间:2020-10-15
答案
是一个高为1的碗形旋转抛物面,底圆半径为1,
转换成极坐标,V=4∫[0,π/2]dθ∫[0,1][(rcosθ)^2+(rsinθ)^2]rdr
=4∫[0,π/2]dθ∫[0,1]r^3dr
=4∫[0,π/2] (r^4/4)[0,1]dθ
=[∫[0,π/2]dθ
=π/2.
转换成极坐标,V=4∫[0,π/2]dθ∫[0,1][(rcosθ)^2+(rsinθ)^2]rdr
=4∫[0,π/2]dθ∫[0,1]r^3dr
=4∫[0,π/2] (r^4/4)[0,1]dθ
=[∫[0,π/2]dθ
=π/2.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点