当前位置: > 利用定义法证明f(x)=-x^3+2在R上为减函数...
题目
利用定义法证明f(x)=-x^3+2在R上为减函数

提问时间:2020-10-15

答案
函数f(x)=x³+2的定义域为(﹢∞,﹣∞).在定义域内任取两点x1,x2,且x1<x2,则
f(x1)-f(x2)=(x1)³+2-[(x2)³-2]=(x1)³-(x2)³=[(x1)-(x2)] [(x1)²+(x1)(x2)+(x2)²]
∵(x1)<(x2),则 (x1)-(x2)<0
又∵(x1)²+(x1)(x2)+(x2)²=(x1)²+(x1)(x2)+¼(x2)²+¾(x2)²=[(x1)+(x2)]²+¾(x2)²
由于(x1)<(x2),即(x1)≠(x2),则[(x1)+(x2)]²>0,¾(x2)²≥0
∴ [(x1)+(x2)]²+¾(x2)²>0
∴f(x1)-f(x2)=[(x1)-(x2)] [(x1)²+(x1)(x2)+(x2)²]<0
所以,函数f(x)=x³+2在R上是减函数.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.