当前位置: > 当a取哪些整数时,代数式x^2+ax+20可以在整数范围内进行因式分解?这个问题可以...
题目
当a取哪些整数时,代数式x^2+ax+20可以在整数范围内进行因式分解?这个问题可以
1. 当a取哪些整数时,代数式x²+ax+20可以在整数范围内进行因式分解?
这个问题可以这个问题可以这样考虑:假设χ²+ax+20能分解成两个因式,则可设χ²+ax+20=(χ+s)(x+t),其中s,t为整数,由于(x+s)(x+t)=x ²+(s+t)x+st,所以必有a=s+t,st=20,s=1,t=20,则a=s+t=21,此时x ²+21x+20=(x+1)(x+20).
根据则种方法你还能写几个满足条件的a值?

提问时间:2020-10-15

答案
∵(x+s)(x+t)=x ²+(s+t)x+st,∴a=s+t,st=20,则a=s+t=21 此时 x ²+21x+20=(x+1)(x+20).a=4+5=9 此时x ²+9x+20=(x+4)(x+5).a=s+t=-4-5=-9 此时x ²-9x+20=(x-4)(x-5).a=2+10=12 此时x ²+1...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.