当前位置: > 已知向量OA=9(3,4) OB=(6,—3) OC=(5-M,3-M)若点A,B,C能构成三角形,求实数M满足什么条件?...
题目
已知向量OA=9(3,4) OB=(6,—3) OC=(5-M,3-M)若点A,B,C能构成三角形,求实数M满足什么条件?

提问时间:2020-10-15

答案
OA=9(3,4)=(27,36) OB=(6,—3) OC=(5-M,3-M)
所以AB=(6-27,-3-36)=(-21,-39)
AC=(5-M-27,3-M-36)=(-M-22,-M-33)
假设点A,B,C不能构成三角形,即A,B,C三点共线
则设AC=xAB,(x为实数)
即(-M-22,-M-33)=x(-21,-39)
所以
-M-22=-21x
-M-33=-39x
解得x=11/18,M=-55/6
所以A,B,C三点不共线的条件是x≠11/18,M≠-55/6
即点A,B,C能构成三角形,实数M满足条件是M≠-55/6
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.