当前位置: > 正方形ABCD中,P为内部一点,连接AP,DP,∠DAP=1∠ADP=15°,连接BP,CP,求证:△PBC是等边△...
题目
正方形ABCD中,P为内部一点,连接AP,DP,∠DAP=1∠ADP=15°,连接BP,CP,求证:△PBC是等边△
正方形ABCD中,P为内部一点,连接AP,DP,∠DAP=∠ADP=15°,连接BP,CP,求证:△PBC是等边△

提问时间:2020-10-15

答案
因为△DEP是等边三角形,所以DP=DE=EP,所以,∠PDE=60度,所以∠EDC=90-15-60=15度.
又因为∠PDA=15度=∠EDC,ED=PD,AD=DC,所以△APD≌△DEC,
因为AP=DP,所以DE=CE=EP,得到∠EPC=∠ECP
又因为∠EPC+∠ECP=180-∠EPD-∠PDC-∠ECD=180-60-75-15=30度,
所以∠EPC=∠ECP=15度,
可以得到∠DPC=∠PDC=75度,所以DC=PC
同理可以证明AB=PB
得到PB=PC=BC
所以△BPC为等边三角形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.