当前位置: > 一道导数题,...
题目
一道导数题,
f(x)是定义在(0,正无穷大)上的非负可导函数,且满足xf'(x)+f(x)≤0.对任意正数a、b,若a<b,则必有
A.af(b)≤bf(a) B.bf(a) ≤af(b) C.af(a)≤f(b) D.bf(b)≤f(a)

提问时间:2020-10-15

答案
令F(x)=xf(x),则F'(x)=xf'(x)+f(x),所以F'(x)=F(b),即af(a)>=bf(b),又有0=f(b),所以bf(a)>=af(b).选A.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.