当前位置: > A为n阶方阵,证明:若存在正整数k使A^k=0,则A的特征值只能是0...
题目
A为n阶方阵,证明:若存在正整数k使A^k=0,则A的特征值只能是0

提问时间:2020-10-15

答案
需两个知识点:
1.零矩阵的特征值只有零
2.若λ是A的特征值,g(x)是x的多项式,则 g(λ) 是 g(A) 的特征值
本题目的证明:
设λ是A的特征值,则λ^k是A^k的特征值
因为 A^k = 0,而零矩阵的特征值只有零
所以 λ^k = 0.
所以λ=0.
即A的特征值只能是0 #
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.