当前位置: > 一道关于曲线和方程的题目...
题目
一道关于曲线和方程的题目
已知二次函数x^2-ax+b=0的两根分别为sinβ和cosβ,其中|β|≤π/4,求 P(a,b)的轨迹方程.

提问时间:2020-10-15

答案
根据韦达定理解题目
sinβ + cosβ = a
sinβ * cosβ = b
第一个式子平方
1 + 2 sinβ * cosβ = a^2
所以
1 + 2b = a^2
b = (a^2 -1)/2
在求定义域
sinβ + cosβ = a
√2 (sinβcos45 + cosβsin45) = a
√2 sin(β + π/4) = a
|β|≤π/4
0 ≤β + π/4 ≤ π/2
sin(β + π/4) ∈ [0,1]
a ∈ [0,√2]
因此 P(a,b)的轨迹方程
b = (a^2 - 1)/2
其中 a ∈ [0,√2]
此轨迹为 抛物线的 一部分
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.