当前位置: > 高二数学圆锥曲线(椭圆)...
题目
高二数学圆锥曲线(椭圆)
设F1,F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,P是椭圆上任意点,若角F1PF2=2θ,求证:PF1*PF2*(cosθ)^2为定值

提问时间:2020-10-15

答案
cos2θ=(PF1^2+PF2^2-4c^2)/2PF1PF2
cos2θ=2cos^2θ-1
PF1PF2cos^2θ=(PF1^2+PF2^2-4c^2)/4+1/2PF1PF2
=(PF1^2+PF2^2+2PF1PF2)/4-c^2
=(PF1+PF2)^2/4-c^2
=4a^2/4-c^2
=b^2
所以PF1*PF2*(cosθ)^2为定值
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.