当前位置: > 在平行四边形abcd中,AB=2BC,E是BA中点,DF⊥BC,垂足为F,证明∠AED=∠EFB...
题目
在平行四边形abcd中,AB=2BC,E是BA中点,DF⊥BC,垂足为F,证明∠AED=∠EFB

提问时间:2020-10-15

答案
因为AB=2BC 所以AE=AD
所以∠ADE=∠AED
延长DE和CB,交于点M
因为BM//AD AE=BE
△AED全等于△BEM
DE=ME
因为△DFM是直角三角形 EF是斜边上的中线
所以EF=ME
∠M=∠EFB ∠M=∠ADE
所以∠EFB=∠ADE=∠AED
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.