当前位置: > 如图①,已知直线y=x+b与y轴交于点C(0,3),与x轴交于点A,抛物线y=ax2+2ax+c过点C、A,且与x轴交于另一点B. (1)求直线与抛物线的函数关系式及点B的坐标;(2)若点P为抛物线上...
题目
如图①,已知直线y=x+b与y轴交于点C(0,3),与x轴交于点A,抛物线y=ax2+2ax+c过点C、A,且与x轴交于另一点B.
作业帮
(1)求直线与抛物线的函数关系式及点B的坐标;
(2)若点P为抛物线上一动点,且点P位于直线AC上方,连结PA,PC,求△APC的面积的最大值;
(3)如图②,将该抛物线在x轴上方的部分沿x轴翻折到x轴的下方,与原抛物线没有变化的部分构成一个新图象,过点B作直线l与新图象交于另外的两点M、N(点M在点N的左侧),是否存在这样的直线l,使得△ABM的面积被AN恰好平分?若存在,请求出直线l的函数关系式;若不存在,请说明理由.

提问时间:2020-10-15

答案
(1)直线y=x+b过点C(0,3),
∴b=3,
故直线的函数关系式为y=x+3,
它与x轴交于点A(-3,0),
抛物线y=ax2+2ax+c过A,C,
∴c=3,
0=3a+3,
解得a=-1.
∴抛物线的解析式是y=-x2-2x+3①,
它与x轴交于另一点B(1,0).
(2)设P(p,-p2-2p+3),-3<p<0,
直线x=p交AC:y=x+3于D(p,p+3),
∴S△APC=
1
2
DP(xC-xA)=
3
2
(-p2-3p)=(-
3
2
(p+
3
2
2+
27
8

∴△APC的面积的最大值是
27
8

(3)设直线l:y=k(x-1)②,
代入①,x2+(k+2)x-k-3=0,
解得x=1或-k-3,
∴xM=-k-3,
将该抛物线在x轴上方的部分沿x轴翻折到x轴的下方,得到抛物线y=x2+2x-3(-3<x<1)③,
把②代入③得,x2+(2-k)x+k-3=0,
解得x=1或k-3,
∴xN=k-3,
△ABM的面积恰好被AN平分,
∴MN=NB,
∴k-3-(-k-3)=1-(k-3),
2k=4-k,
解得k=
4
3

故直线l的函数关系式是y=
4
3
x-
4
3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.