当前位置: > 一个四边形的四条边长依次为a、b、c、d,且满足a2+b2+c2+d2=2ac+2bd,那么这个四边形一定是平行四边形....
题目
一个四边形的四条边长依次为a、b、c、d,且满足a2+b2+c2+d2=2ac+2bd,那么这个四边形一定是平行四边形.
请说明为什么,

提问时间:2020-10-15

答案
一定为平行四边形
a2+b2+c2+d2=2ac+2bd
==》(a^2-2ac+b^2)+(b^2-2bd+d^2)=0
==>(a-c)^2+(b-d)^2=0
==》a=c b=d
所以为平行四边形
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.