题目
已知,抛物线y=ax平方+bx+c经过点O(0,0),A(7,4),且对称轴l与x轴交于点B(5,0),求抛物线的表达式
提问时间:2020-10-15
答案
:(1)由题意得 -b 2a =5 c=0 49a+7b+c=4 (1分),
解得 a=-4 21 b=40 21 c=0. ,
∴y=-4 21 x2+40 21 x.(3分)
(2)∵△BOC与△DOC重合,OB=5,BC=5 2 ,
∴BO=DO=5,CD=BC=5 2 ,∠OBC=∠ODC=90°,
∴∠EDO+∠FDC=90°,又∠EDO+∠EOD=90°,
∴∠EOD=∠FDC,
∵∠OED=∠DFC=90°,
∴△EOD∽△FDC,(2分)
∴ED FC =EO DF =OD CD =5 5 2 =2,(1分)
∵四边形OEFB是矩形,
∴EF=OB,EO=FB,
设FC=x,则ED=2x,DF=5-2x,
∴EO=10-4x,
∴10-4x=5 2 +x,解,得x=3 2 ,
∴ED=3,EO=4,
∴D(3,4).(1分)
(3)过点H作HP⊥OB,垂足为点P.
∵S△DOH:S△DHC=1:4,
∴S△DOH S△DHC =OH HC =1 4 ,(1分)
∵HP⊥OB,CB⊥OB,
∴HP∥BC,
∴OH OC =OP OB =PH BC =1 5 ,
∴OP=1,PH=1 2 ,
∴H(1,1 2 ),(1分)
∴经过点D(3,4),H(1,1 2 )的直线DG的表达式为y=7 4 x-5 4 ,(1分)
∴G(5,15| 2)
解得 a=-4 21 b=40 21 c=0. ,
∴y=-4 21 x2+40 21 x.(3分)
(2)∵△BOC与△DOC重合,OB=5,BC=5 2 ,
∴BO=DO=5,CD=BC=5 2 ,∠OBC=∠ODC=90°,
∴∠EDO+∠FDC=90°,又∠EDO+∠EOD=90°,
∴∠EOD=∠FDC,
∵∠OED=∠DFC=90°,
∴△EOD∽△FDC,(2分)
∴ED FC =EO DF =OD CD =5 5 2 =2,(1分)
∵四边形OEFB是矩形,
∴EF=OB,EO=FB,
设FC=x,则ED=2x,DF=5-2x,
∴EO=10-4x,
∴10-4x=5 2 +x,解,得x=3 2 ,
∴ED=3,EO=4,
∴D(3,4).(1分)
(3)过点H作HP⊥OB,垂足为点P.
∵S△DOH:S△DHC=1:4,
∴S△DOH S△DHC =OH HC =1 4 ,(1分)
∵HP⊥OB,CB⊥OB,
∴HP∥BC,
∴OH OC =OP OB =PH BC =1 5 ,
∴OP=1,PH=1 2 ,
∴H(1,1 2 ),(1分)
∴经过点D(3,4),H(1,1 2 )的直线DG的表达式为y=7 4 x-5 4 ,(1分)
∴G(5,15| 2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1在四边形abcd中,AB=AC,∠ABD=60°,∠ADB=76°,∠BDC=28°,求∠DBC的度数.
- 2SO2溶于水加HCL会有什么反映?会放出SO2么?为什么加BACL2不沉淀?
- 3()弦()管 成语 或者正确的词语
- 4第一工程队承包甲工程,晴天需要12天完成,雨天工作效率下降40%,第二工程队承包乙工程,晴天需要15天完成,雨天工作效率下降10%,实际上两个工程队同时开工,同时完工、两工程队各工
- 5羊毛衫厂共有工人538人,分三个车间,第一车间比第三车间少12人,已知第二车间与第三车间的人数比是3:4.三个车间各有多少人?
- 6月球的英语可以是moon ball吗?
- 7一个直角三角形中,两个锐角度数的差是20度,这两个锐角分别是多少度?
- 8I am a boy.I am loving a girl.But how can I show my heart to her in a successful way?
- 9"风刮的很大"英文怎么说
- 107(2x-1)-3(3x+5)+1=2(9x-4)