题目
已知向量a=(sinX;3/2),向量b=(cosX,_1)求,①当a//b时,2cos^2x—sin2x的值②求F(x)=(a+b)b在〔-π/2,0
急
要过程
急
要过程
提问时间:2020-10-15
答案
1 向量a=(sinX;3/2)=-3/2(-2/3sinX,-1),向量b=(cosX,-1)
a//b
-2/3sinx=cosx
tanx=-3/2
2cos^2x—sin2x=2(cosx)^2-sin2x=cos2x+1+sin2x
=[1+(tanX)^2]/[1-(tanx)^2]+1+2tanx/[1-tanX)^2]
=[1+(-3/2)^2]/[1-(-3/2)^2]+1+2(-3/2)/[1-(-3/2)^2]=4/5
2 F(x)=(a+b)b在〔-π/2,0
a+b=([sinx-3/2cosx],1/2)
|a+b|=[(sinx-1.5cosx)^2+1/4]^0.5
k1=(1/2)/(sinx-3/2cosx)=1/(2sinx-3cosx)
|b|=[(cosx)^2+1]^0.5
k2=-1/cosX
tanN=|(k2-k1)/(1+k1k2)|=2/(sinx+3cosx)
cosN=
F(x)=(a+b)b=|a+b||b|cosN=
a//b
-2/3sinx=cosx
tanx=-3/2
2cos^2x—sin2x=2(cosx)^2-sin2x=cos2x+1+sin2x
=[1+(tanX)^2]/[1-(tanx)^2]+1+2tanx/[1-tanX)^2]
=[1+(-3/2)^2]/[1-(-3/2)^2]+1+2(-3/2)/[1-(-3/2)^2]=4/5
2 F(x)=(a+b)b在〔-π/2,0
a+b=([sinx-3/2cosx],1/2)
|a+b|=[(sinx-1.5cosx)^2+1/4]^0.5
k1=(1/2)/(sinx-3/2cosx)=1/(2sinx-3cosx)
|b|=[(cosx)^2+1]^0.5
k2=-1/cosX
tanN=|(k2-k1)/(1+k1k2)|=2/(sinx+3cosx)
cosN=
F(x)=(a+b)b=|a+b||b|cosN=
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1英语翻译
- 2若a是三角形的内角,且sina+cosa=3/4,则此三角形一定是
- 3物块A在水平方向上不受任何外力作用.即A、B之间没有摩擦力,则µ1可以为0,也可以不为0什么意思?
- 4sue plays sports every day 为什么plays sports加s
- 5生态系统中的主要功能是通过____和_____
- 6cosx小于等于2分之1的集合,
- 7解初一上册一元一次方程的应用题
- 8已知7+19平方根的小数部分为m,11-19平方根的小数部分是n,求m+n的值.
- 9当k为何值时,关于x的方程4分之x-k=k+6分之x的解比关于x的方程k﹙2+x)=(k+2)x的解大6.
- 10一粒种子能够长成参天大树是依靠细胞的_和细胞_;前者使细胞_,后者使细胞_.
热门考点