当前位置: > 若关于x的方程x^2-ax+1=0在[0,2]上无解,求实数a的取值范围.......
题目
若关于x的方程x^2-ax+1=0在[0,2]上无解,求实数a的取值范围....
一楼肯定是错的嘛.....

提问时间:2020-10-14

答案
x^2-ax+1=0在[0,2]上无解
1.
在(-∞,∞)上都无
△=a^2-4<0
-2<a<2
2.
在[0,2]上无解,但在其以外有
即x=[a±√(a^2-4)]/2且x>2,或x<0
2-1.
x=[a±√(a^2-4)]/2>2,
±√(a^2-4)>4-a
2-1-1.取“+”号,a<4
a^2-4>(4-a)^2=16-8a+a^2
-20>-8a
a>5/2
所以5/2<a<4;
2-1-2.取“+”号,a>4
a^2-4≥0
a≥2或a≤-2
所以a>4;
2-1-3.取“-”号,a>4
-√(a^2-4)>4-a
√(a^2-4)<a-4
a^2-4<(a-4)^2=a^2-8a+16
-20<-8a
a<5/2
无解;
2-1-4.取“-”号,a<4
-√(a^2-4)>4-a
√(a^2-4)<a-4<0
无解.
所以x=[a±√(a^2-4)]/2且x>2时,
5/2<a<4且a>4
a无解.
2-2.
x=[a±√(a^2-4)]/2<0,
±√(a^2-4)<-a
2-2-1.取“+”号,a<0
√(a^2-4)<-a
a^2-4<a^2
只要a^2-4>0
所以a<-2;
2-2-2.取“+”号,a>0
√(a^2-4)<-a
无解;
2-2-3.取“-”号,a>0
-√(a^2-4)<-a
√(a^2-4)>a
a^2-4>a^2
无解;
2-2-4.取“-”号,a<0
-√(a^2-4)<-a
√(a^2-4)>a
a^2-4<a^2
只要a^2-4≥0
a≤-2;
所以x=[a±√(a^2-4)]/2且x<0时,
a<-2且a≤-2
所以a<-2.
所以-2<a<2时,在(-∞,∞)上都无解,
a<-2时,在[0,2]上无解,但在x<0内有解.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.