题目
J 和 K 开头的英文单词.
J 和 K 开头的关于数学的单词或Phrase,需要 definition 和一个 example
列如:s 开头的是:
System of a linear equation
definition:
Two or more linear equatiions in the same variables,also called a liear system.
example:
x+2y=7
3x-2y=5
J 和 K 开头的关于数学的单词或Phrase,需要 definition 和一个 example
列如:s 开头的是:
System of a linear equation
definition:
Two or more linear equatiions in the same variables,also called a liear system.
example:
x+2y=7
3x-2y=5
提问时间:2020-10-14
答案
The Jacobson radical
11.2.1.Definition.Let M be a left R-module.The intersection of all maximal submodules of M is called the Jacobson radical of M,and is denoted by J(M).
11.2.2.Definition.Let M be a left R-module.
The submodule N of M is called essential or large in M if NK (0) for all nonzero submodules K of M.
The submodule N is called superfluous or small in M if N+K M for all proper submodules K of M.
Kernel
Definition Let :R->S be a ring homomorphism.The set
{ a R | (a) = 0 }
is called the kernel of ,denoted by ker().
11.2.3.Proposition.Let N be a submodule of RM.If K is maximal in the set of all submodules of M that have trivial intersection with N,then N+K is essential in M,and (N+K)/K is essential in M/K.
11.2.4.Proposition.The socle of any module is the intersection of its essential submodules.
11.2.5.Definition.A radical for the class of left R-modules is a function that assigns to each module RM a submodule (M) such that
(i) f((M)) (N),for all modules RN and all f HomR(M,N);
(ii) (M/(M)) = (0).
11.2.6.Definition.Let C be any class of left R-modules.For any module RM we make the following definition.
radC(M) = ker(f),
where the intersection is taken over all R-homomorphisms f :M -> X,for all X in C.
11.2.7.Proposition.Let be a radical for the class of left R-modules,and let F be the class of left R-modules X for which (X) = (0).
(a) (R) is a two-sided ideal of R.
(b) (R) M (M) for all modules RM.
(c) radF is a radical,and = radF.
(d) (R) = Ann(X),where the intersection is taken over all modules X in F.
11.2.8.Lemma.[Nakayama] If R M is finitely generated and J(R)M = M,then M = (0).
11.2.9.Proposition.Let M be a left R-module.
(a) J(M) = { m M | Rm is small in M }.
(b) J(M) is the sum of all small submodules of M.
(c) If M is finitely generated,then J(M) is a small submodule.
(d) If M is finitely generated,then M/J(M) is semisimple if and only if it is Artinian.
11.2.10.Theorem.The Jacobson radical J(R) of the ring R is equal to each of the following sets:
(1) The intersection of all maximal left ideals of R;
(2) The intersection of all maximal right ideals of R;
(3) The intersection of all left-primitive ideals of R;
(4) The intersection of all right-primitive ideals of R;
(5) { x R | 1-ax is left invertible for all a R };
(6) { x R | 1-xa is right invertible for all a R };
(7) The largest ideal J of R such that 1-x is invertible in R for all x J.
11.2.11.Definition.The ring R is said to be semiprimitive if J(R) = (0).
11.2.12.Proposition.Let R be any ring.
(a) The Jacobson radical of R contains every nil ideal of R.
(b) If R is left Artinian,then the Jacobson radical of R is nilpotent.
11.2.1.Definition.Let M be a left R-module.The intersection of all maximal submodules of M is called the Jacobson radical of M,and is denoted by J(M).
11.2.2.Definition.Let M be a left R-module.
The submodule N of M is called essential or large in M if NK (0) for all nonzero submodules K of M.
The submodule N is called superfluous or small in M if N+K M for all proper submodules K of M.
Kernel
Definition Let :R->S be a ring homomorphism.The set
{ a R | (a) = 0 }
is called the kernel of ,denoted by ker().
11.2.3.Proposition.Let N be a submodule of RM.If K is maximal in the set of all submodules of M that have trivial intersection with N,then N+K is essential in M,and (N+K)/K is essential in M/K.
11.2.4.Proposition.The socle of any module is the intersection of its essential submodules.
11.2.5.Definition.A radical for the class of left R-modules is a function that assigns to each module RM a submodule (M) such that
(i) f((M)) (N),for all modules RN and all f HomR(M,N);
(ii) (M/(M)) = (0).
11.2.6.Definition.Let C be any class of left R-modules.For any module RM we make the following definition.
radC(M) = ker(f),
where the intersection is taken over all R-homomorphisms f :M -> X,for all X in C.
11.2.7.Proposition.Let be a radical for the class of left R-modules,and let F be the class of left R-modules X for which (X) = (0).
(a) (R) is a two-sided ideal of R.
(b) (R) M (M) for all modules RM.
(c) radF is a radical,and = radF.
(d) (R) = Ann(X),where the intersection is taken over all modules X in F.
11.2.8.Lemma.[Nakayama] If R M is finitely generated and J(R)M = M,then M = (0).
11.2.9.Proposition.Let M be a left R-module.
(a) J(M) = { m M | Rm is small in M }.
(b) J(M) is the sum of all small submodules of M.
(c) If M is finitely generated,then J(M) is a small submodule.
(d) If M is finitely generated,then M/J(M) is semisimple if and only if it is Artinian.
11.2.10.Theorem.The Jacobson radical J(R) of the ring R is equal to each of the following sets:
(1) The intersection of all maximal left ideals of R;
(2) The intersection of all maximal right ideals of R;
(3) The intersection of all left-primitive ideals of R;
(4) The intersection of all right-primitive ideals of R;
(5) { x R | 1-ax is left invertible for all a R };
(6) { x R | 1-xa is right invertible for all a R };
(7) The largest ideal J of R such that 1-x is invertible in R for all x J.
11.2.11.Definition.The ring R is said to be semiprimitive if J(R) = (0).
11.2.12.Proposition.Let R be any ring.
(a) The Jacobson radical of R contains every nil ideal of R.
(b) If R is left Artinian,then the Jacobson radical of R is nilpotent.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1小说中好的词语,或是意境优美的句子,写出来给我看看
- 2地球上人口的增长会增加地球的重量吗?
- 3某批产品的一等品率为80%,现进行重复抽样调查,共抽取4个样品,问一等品数不少于3件的概率是多少?
- 4若函数在某点无定义,则在该点的极限不存在
- 5Li Ming often help Lily with her Chinese 为什么用with
- 6两长方形周长相等,甲长与宽之比是3:2,乙是7:5,求甲与乙面积比
- 7求解一道AP微积分题!
- 8she doesn’t go out in the evening.改成肯定句
- 9关于二元一次方程组基本概念
- 10有一桶油,第一次取出21千克,第二次取出这桶油的四分之一,第三次取出的是前两次的总和.
热门考点