当前位置: > 已知圆C:x^2+y^2=4和直线L:3x+4y+12=0,点P是圆C上的一动点,直线与坐标轴的焦点分别为点A,B.(1)求与圆C相切且平行直线L的直线方程.(2)求三角形PAB面积的最大值...
题目
已知圆C:x^2+y^2=4和直线L:3x+4y+12=0,点P是圆C上的一动点,直线与坐标轴的焦点分别为点A,B.(1)求与圆C相切且平行直线L的直线方程.(2)求三角形PAB面积的最大值

提问时间:2020-10-14

答案
1 设与圆C相切且平行直线L的直线方程为:3x+4y+b=0
所以 由“圆C相切” 得;
圆心到直线的距离 d=abs(b)/[(3*3+4*4)^1/2]=2 (abs是绝对值)
平方 b^2/5=4
所以 b=2*5^1/2 或 -2*5^1/2
所以 3x+4y+2*5^1/2=0 或 3x+4y-2*5^1/2=0
2.A(0,-3) B(-4,0) 所以 AB=5
由图形得:
直线l 3x+4y+12=0 与 3x+4y+2*5^1/2=0
的距离为 d=(12-2*5^1/2)/5
所以P到AB的最大距离为 d+2r=(12-2*5^1/2)/5+4
所以S PAB 最大=[(12-2*5^1/2)/5+4]*5/2=16-5^1/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.