当前位置: > 多元函数求条件极值时,用拉格朗日乘数法求,多元函数中元的个数与附件条件的个数有没有关系啊?如高数课本上,z=f(x,y)这个二元函数求极值时,给定一个附加条件φ(x,y)=0,并列出拉格朗日函数,那多...
题目
多元函数求条件极值时,用拉格朗日乘数法求,多元函数中元的个数与附件条件的个数有没有关系啊?如高数课本上,z=f(x,y)这个二元函数求极值时,给定一个附加条件φ(x,y)=0,并列出拉格朗日函数,那多于二元的需要几个附加函数呢?
为什么啊

提问时间:2020-10-14

答案
你想如果一共n元函数
你有k个条件,还有本身的一个方程
如果k+1>n
那么方程个数比未知数还多,显然正常情况下没有解的
这种方程成为超定方程组
除非神奇的有些方程线性相关,一般不可能
另一种可以解这种方程组,
在2范数意义下使得误差最小,就是有名的最小二乘
但是没法得到精确解,因为方程数过多
所以应该有k+1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.