当前位置: > 点p在圆X^2+Y^2-8X-4Y+11=0,点q在圆:X^2+Y^2+4X+2Y+1=0上,则PQ的最小值是?...
题目
点p在圆X^2+Y^2-8X-4Y+11=0,点q在圆:X^2+Y^2+4X+2Y+1=0上,则PQ的最小值是?
请详细解释,要有过程!好的加分!
不好意思,问题答错了。应该是:已知X^2+Y^2+4X-2Y-4=0,则X^2+y^2的最大值?

提问时间:2020-10-14

答案
连接两个园的圆心,显然,与各自的园的交点的连线就是最短的
圆心分别为(4,2)(-2,-1)
半径分别为3,2
两园心距离为:根号下[(4+2)^2+(2+1)^2]=3根号5
所以
|PQ|的最小值为两圆心距离减去两园的半径
=3根号5-2-3
=3根号5-5
其实还可以求的最大值:
最大值为两圆心距离加上两园的半径
=3根号5+2+3
=3根号+5
x^2+y^2+4x-2y-4=0
(x+2)^2+(y-1)^2=9
圆心为(-2,1)
到原点距离为:√5
所以,圆x^2+y^2+4x-2y-4=0到原点最大距离=√5+3
x^2+y^2最大值=(√5+3)^2=14+6√5
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.