题目
点p在圆X^2+Y^2-8X-4Y+11=0,点q在圆:X^2+Y^2+4X+2Y+1=0上,则PQ的最小值是?
请详细解释,要有过程!好的加分!
不好意思,问题答错了。应该是:已知X^2+Y^2+4X-2Y-4=0,则X^2+y^2的最大值?
请详细解释,要有过程!好的加分!
不好意思,问题答错了。应该是:已知X^2+Y^2+4X-2Y-4=0,则X^2+y^2的最大值?
提问时间:2020-10-14
答案
连接两个园的圆心,显然,与各自的园的交点的连线就是最短的
圆心分别为(4,2)(-2,-1)
半径分别为3,2
两园心距离为:根号下[(4+2)^2+(2+1)^2]=3根号5
所以
|PQ|的最小值为两圆心距离减去两园的半径
=3根号5-2-3
=3根号5-5
其实还可以求的最大值:
最大值为两圆心距离加上两园的半径
=3根号5+2+3
=3根号+5
x^2+y^2+4x-2y-4=0
(x+2)^2+(y-1)^2=9
圆心为(-2,1)
到原点距离为:√5
所以,圆x^2+y^2+4x-2y-4=0到原点最大距离=√5+3
x^2+y^2最大值=(√5+3)^2=14+6√5
圆心分别为(4,2)(-2,-1)
半径分别为3,2
两园心距离为:根号下[(4+2)^2+(2+1)^2]=3根号5
所以
|PQ|的最小值为两圆心距离减去两园的半径
=3根号5-2-3
=3根号5-5
其实还可以求的最大值:
最大值为两圆心距离加上两园的半径
=3根号5+2+3
=3根号+5
x^2+y^2+4x-2y-4=0
(x+2)^2+(y-1)^2=9
圆心为(-2,1)
到原点距离为:√5
所以,圆x^2+y^2+4x-2y-4=0到原点最大距离=√5+3
x^2+y^2最大值=(√5+3)^2=14+6√5
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1组成和结构相似的分子晶体的熔沸点的高低只要依据相对分子质量就能判断吗?
- 2甲乙丙丁四人捐款,甲捐的是其他3人的1/2,乙是其他3人的1/3,丙是其他3人的1/4丁捐了169元,乙捐了多少
- 3长为11,8,4,3的四条线段,选其中三条组成三角形,它们分别是
- 4假如只有三天光明
- 5用英语写一件有意义的事
- 6描写春雨的片段
- 7昆虫类的动物有哪些
- 8Is Mary ___ heavy?No,she is very thin.A.a little of B.a bit of C.a little bit D.a bit little
- 9人类的智慧在都江堰上表现在哪些方面(急)
- 10有木有讲解《望月有感》白居易的课件啊?