题目
如图所示,AD是△ABC的角平分线,EF是AD的垂直平分线,交BC的延长线于点F,连接
AF.求证:∠BAF=∠ACF.
AF.求证:∠BAF=∠ACF.
提问时间:2020-10-13
答案
证明:∵EF是AD的垂直平分线,
∴AF=DF,
∴∠FAD=∠ADF,
∵∠FAD=∠FAC+∠CAD,∠ADF=∠B+∠DAB,
∵AD是∠BAC的平分线,
∴∠DAB=∠CAD,
∴∠CAF=∠B,
∴∠BAC+∠FAC=∠B+∠BAC,
即∠BAF=∠ACF.
∴AF=DF,
∴∠FAD=∠ADF,
∵∠FAD=∠FAC+∠CAD,∠ADF=∠B+∠DAB,
∵AD是∠BAC的平分线,
∴∠DAB=∠CAD,
∴∠CAF=∠B,
∴∠BAC+∠FAC=∠B+∠BAC,
即∠BAF=∠ACF.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点