题目
设函数f(x)的定义域为D,如果对于任意的x1∈D,存在唯一的x2∈D,使得 成立(其中C为常数)
1.称常数J为函数y=f(x)(x属于D)在定义域D上的“J值”,如果对任意x1属于D,存在唯一的x2属于D使J=1/2[f(x1)+f(x2)],据此定义函数f(x)=log2(x)(1/2≤x≤4)的一个“J值”为_____
2.已知tana=3,计算[(sina)^2-2(cosa)^2]除以[1-3sinacosa]=
1.称常数J为函数y=f(x)(x属于D)在定义域D上的“J值”,如果对任意x1属于D,存在唯一的x2属于D使J=1/2[f(x1)+f(x2)],据此定义函数f(x)=log2(x)(1/2≤x≤4)的一个“J值”为_____
2.已知tana=3,计算[(sina)^2-2(cosa)^2]除以[1-3sinacosa]=
提问时间:2020-10-13
答案
1(1/2)(.logx1+logx2)
=(1/2)log(x1x2)
x1,x2∈[1/2,4],
取x1x2=1/2*4=2,得J=1/2.
2.分子分母都除以(cosa)^2,得
[(tana)^2-2]/[(tana)^2+1-3tana]
=7.
=(1/2)log(x1x2)
x1,x2∈[1/2,4],
取x1x2=1/2*4=2,得J=1/2.
2.分子分母都除以(cosa)^2,得
[(tana)^2-2]/[(tana)^2+1-3tana]
=7.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1在一次函数y=2分之1x+2分之1的图像上,与x轴的距离等于1的点的坐标是
- 2be less a than b的意思是什么啊, a,b 是指代某物
- 3麻烦帮忙看下,下面的那句话有没有什么错
- 4i borrowed a book on how to improve body language from jack同义句
- 5直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x的解集为_.
- 6硝态氮是什么
- 7the driver get close to------------in the traffic accident
- 8Is his pants purple?Yes ,you are right这个句子是正确的吗?
- 9生石灰与水反应生成物就是石灰水吗
- 10高中数学;角A=60度 b平方=ac a平方-c平方=ab-bc 求bsinB/c的值