题目
已知函数f(x)=x-1-alnx (a∈R).求证:f(x)≥0恒成立的充要条件是a=1
②必要性
f'(x)=1-a x =x-a x ,其中x>0
(i)当a≤0时,f'(x)>0恒成立,所以函数f(x)在(0,+∞)上是增函数
而f(1)=0,所以当x∈(0,1)时,f(x)<0,与f(x)≥0恒成立相矛盾
∴a≤0不满足题意.
(ii)当a>0时,∵x>a时,f'(x)>0,所以函数f(x)在(a,+∞)上是增函数;
0<x<a时,f'(x)<0,所以函数f(x)在(0,a)上是减函数;
∴f(x)≥f(a)=a-a-alna
∵f(1)=0,所以当a≠1时,f(a)<f(1)=0,此时与f(x)≥0恒成立相矛盾
∴a=1
在上面证明必要性的过程中,“∵f(1)=0,所以当a≠1时,f(a)<f(1)=0,此时与f(x)≥0恒成立相矛盾”是什么意思?为什么a≠1时,有f(a)<f(1)?
②必要性
f'(x)=1-a x =x-a x ,其中x>0
(i)当a≤0时,f'(x)>0恒成立,所以函数f(x)在(0,+∞)上是增函数
而f(1)=0,所以当x∈(0,1)时,f(x)<0,与f(x)≥0恒成立相矛盾
∴a≤0不满足题意.
(ii)当a>0时,∵x>a时,f'(x)>0,所以函数f(x)在(a,+∞)上是增函数;
0<x<a时,f'(x)<0,所以函数f(x)在(0,a)上是减函数;
∴f(x)≥f(a)=a-a-alna
∵f(1)=0,所以当a≠1时,f(a)<f(1)=0,此时与f(x)≥0恒成立相矛盾
∴a=1
在上面证明必要性的过程中,“∵f(1)=0,所以当a≠1时,f(a)<f(1)=0,此时与f(x)≥0恒成立相矛盾”是什么意思?为什么a≠1时,有f(a)<f(1)?
提问时间:2020-10-13
答案
当a>0时,∵x>a时,f'(x)>0,所以函数f(x)在(a,∞)上是增函数;
0<x<a时,f'(x)<0,所以函数f(x)在(0,a)上是减函数;
∴f(x)≥f(a)=a-a-alna
由导数知f(a)为最小值
0<x<a时,f'(x)<0,所以函数f(x)在(0,a)上是减函数;
∴f(x)≥f(a)=a-a-alna
由导数知f(a)为最小值
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 11."小王也找过了"有几种歧义?"北京劳模中青年居多"有几种歧义?请详细说明,
- 2已知点A(5,-m)与点B(n,-3)关于原点对称则 A.m=3,n=5 B.m=-3,n=5 C.m=-3,n=-5 D.m=3,n=-5
- 3带新的成语有哪些
- 4计算:|二分之一-1|+|三分之一-二分之一|+|四分之一-三分之一|+.+|二千零四分之一-二千零三|
- 5求体积和重量 长 50cm 厚5Mm 宽 10MM 算体积 和重量
- 6向量a=(1,1) a与a+2b的方向相同,则a*b的取值范围为
- 7一个长方形的长是20分米,增加4分米后,面积增加了24平方分米,原来长方形的面积是多少?
- 8我国古代经济重心何时开始南移
- 9如图:菱形ABCD中,E是AB的中点,且DE⊥AB,AB=a.求: (1)∠ABC的度数; (2)对角线AC的长; (3)菱形ABCD的面积.
- 10已知(19x-31)(13x-17)-(13x-17)(11x-23)可化成(ax+b)(8x+c),其中a.b.c均为整数,求a+b+c的值.
热门考点