当前位置: > 函数f(x)=x2-4x+3,集合M={(x,y)|f(x)+f(y)≤0},集合N={(x,y)|f(x)-f(y)≥0},则在平面直角坐标系内集合M∩N所表示的区域的面积是_....
题目
函数f(x)=x2-4x+3,集合M={(x,y)|f(x)+f(y)≤0},集合N={(x,y)|f(x)-f(y)≥0},则在平面直角坐标系内集合M∩N所表示的区域的面积是______.

提问时间:2020-10-13

答案
因为f(x)=x2-4x+3,f(y)=y2-4y+3,
则f(x)+f(y)=(x-2)2+(y-2)2-2,
f(x)-f(y)=x2-y2-4(x-y)=(x-y)(x+y-4).
∴P={(x,y)|(x-2)2+(y-2)2≤2},
Q={(x,y)|(x-y)(x+y-4)≥0}.
故集合P∩Q所表示的区域为两个扇形,
其面积为圆面积的一半,即为π.
故答案为:π.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.