当前位置: > 用数学归纳法证明2²;+4²;+6²;+……+(2n)²=1/4n(n+1)(2n+1)...
题目
用数学归纳法证明2²;+4²;+6²;+……+(2n)²=1/4n(n+1)(2n+1)

提问时间:2020-10-13

答案
正确的结论是:2²+4²+6²+……+﹙2n﹚²=﹙2/3﹚n﹙n+1﹚﹙2n+1)
证明:
1、当n=1时,2^2=2/3*1*2*3,符合题述公式
2、下面证明,当f(n)=2^2+4^2+6^2+...+[2n]^2=2/3*n(n+1)(2n+1)时
f(n+1)=2^2+4^2+6^2+...+[2n]^2+[2(n+1)]^2=2/3*(n+1)(n+2)(2n+3)
f(n+1)=f(n)+[2(n+1)]^2
=2/3*n(n+1)(2n+1)+[2(n+1)]^2
=[2n(n+1)(2n+1)+12(n+1)(n+1)]/3
=[4n^2+2n+12n+12](n+1)/3
=[4n^2+14n+12](n+1)/3
=2[2n^2+7n+6](n+1)/3
=2(2n+3)(n+2)(n+1)/3
=2/3*(n+1)(n+2)(2n+3)
综上所述,当f(n)=2^2+4^2+6^2+...+[2n]^2=2/3*n(n+1)(2n+1)时
f(n+1)=2^2+4^2+6^2+...+[2n]^2+[2(n+1)]^2=2/3*(n+1)(n+2)(2n+3)
又因为当n=1时,2^2=2/3*1*2*3,符合题述公式
所以题述公式成立
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.