当前位置: > 设f(x)在(负无穷,正无穷)上连续,且f(x)极限存在,证明f(x)为有界函数...
题目
设f(x)在(负无穷,正无穷)上连续,且f(x)极限存在,证明f(x)为有界函数

提问时间:2020-10-13

答案
lim(x->∞)f(x)=A
即对任意的ε>0(那么不妨取ε=1),存在X>0,使|x|>X时
有|f(x)-A|<1,即A-1故已经证明在|x|>X上,f(x)有界
那么在|x|<=X上,由于f(x)连续,故由闭区间上连续函数有界可得f(x)有界
综上获证
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.