当前位置: > 矩形ABCD的对角线AC,BD相交于点O,E,F,G,H,分别为OD、OA、OB、OC的中点.试说明:四边形EFGH是矩形...
题目
矩形ABCD的对角线AC,BD相交于点O,E,F,G,H,分别为OD、OA、OB、OC的中点.试说明:四边形EFGH是矩形

提问时间:2020-10-13

答案
证明:∵E是OA的中点,G是OC的中点,
∴OE= AO,OG= CO.
∵四边形ABCD是矩形,
∴AO=CO,∴OE=OG.
同理可证OF=OH.
∴四边形EFGH是平行四边形.
∵OE= AO,OG= OC,
∴EG=OE+OG= AC,同理FH= BD.
又∵AC=BD,∴EG=FH,
∴四边形EFGH是矩形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.