题目
设f(x)在[0,1]上有二阶连续导数,证明:∫ (-1,2)f(x)dx=1/2[f(1)+f(2)]-1/2∫(1,2)(2-x)(x-1)f"(x)dx
提问时间:2020-10-13
答案
用分部积分法.
∫^(0,1)x(1-x)f"(x)dx (u= x(1-x) v'= f''(x) u' =1-2x v= f'(x)
=[x(1-x) f'(x) ] (0,1) - ∫^(0,1)(1-2x)f'(x)dx 再设u1= 1-2x v1 = f'(x) (u1)' =-2 (v1)'= f(x)
= 0 - (1- 2x) f(x) (0,1) - 2 ∫^(0,1)f(x)dx
=f(1) +f(0) -2 ∫^(0,1)fx)dx
移项,整理即得::∫^(0,1)f(x)dx=1/2 (f(0)+f(1))- 1/2 ∫^(0,1)x(1-x)f"(x)
其中:[x(1-x) f'(x) ] (0,1) 表示:函数[x(1-x) f'(x) ] 在x=1的值减去它在 x=0的值.另处类似.
∫^(0,1)x(1-x)f"(x)dx (u= x(1-x) v'= f''(x) u' =1-2x v= f'(x)
=[x(1-x) f'(x) ] (0,1) - ∫^(0,1)(1-2x)f'(x)dx 再设u1= 1-2x v1 = f'(x) (u1)' =-2 (v1)'= f(x)
= 0 - (1- 2x) f(x) (0,1) - 2 ∫^(0,1)f(x)dx
=f(1) +f(0) -2 ∫^(0,1)fx)dx
移项,整理即得::∫^(0,1)f(x)dx=1/2 (f(0)+f(1))- 1/2 ∫^(0,1)x(1-x)f"(x)
其中:[x(1-x) f'(x) ] (0,1) 表示:函数[x(1-x) f'(x) ] 在x=1的值减去它在 x=0的值.另处类似.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1怎么将列向量单位化?
- 2我家幸福年手抄报的内容怎么写
- 3100以内既是2的倍数,又有因数3的数有多少个
- 4已知函数f(x)=ax3-bx+1,a,b∈R,若f(-2)=-1,则f(2)=_.
- 5This movie made the audience moved 中的moved怎么理解 这里应把它理解成形容词好还是过去分词好
- 6行李直往来,供其乏困中的通假字
- 712.下列选项中,属于因果联系的是( )A.风来雨至B.冬去春来C.摩擦生热D.电闪雷鸣
- 8有一篇文言文只知道主要讲了什么内容不知道是哪篇
- 9in the event of difficulty arising from implementation of this provision,the matter will be referred
- 10篮球个数的6分之5等于足球个数的8分之7,篮球与足球个数的比是( ):( )
热门考点